Wege, Pfade und Kreise

- Def.: Ein Weg ist eine Folge von Knoten $(v_1, v_2, ..., v_k)$, so dass $\{v_i, v_{i+1}\} \in E$ für alle $1 \le i \le k$.
 - Der Abstand zwischen zwei Knoten ist die Länge des kürzesten Weges zwischen diesen Knoten.
 - ▶ Ein Weg heißt einfach, wenn $\{v_i,v_{i+1}\}\neq\{v_j,v_{j+1}\}$ für alle $1 \le i < j < k$
 - Analog für gerichtete Graphen
- Def.: Ein Pfad ist ein Weg $(v_1, v_2, ..., v_k)$, so dass $v_i \neq v_j$ für alle $1 \leq i \leq j \leq k$.
- Def.: Ein Kreis ist ein einfacher Weg $(v_1, v_2, ..., v_k)$, so dass $v_i \neq v_j$ für alle 1 < i < j < k und $v_1 = v_k$.

Zusammenhang

- Def.: Ein ungerichteter Graph ist zusammenhängend, wenn es für alle u,v∈V einen Pfad von u nach v gibt.
- Def.: Ein gerichteter Graph ist stark zusammenhängend, wenn es für alle u,v∈V einen Pfad von u nach v und einen Pfad von v nach u gibt.
 - Ein gerichteter Graph ist schwach zusammenhängend wenn sein ungerichteter Graph zusammenhängend ist.
- Die (Zusammenhangs-)Komponenten eines Graphen sind seine maximalen zusammenhängenden Teilgraphen.

Bäume

- Def.: Ein Baum ist ein zusammenhängender kreisfreier Graph.
 - Ein Knoten eines Baums v heißt Blatt, wenn deg(v)=1.
 - Ein Wald ist ein Graph, dessen Komponenten Bäume sind.
- Satz: In jedem Baum gilt |E|=|V|-1.
 - ▶ Beweis: Widerspruch (durch Annahme es gäbe ein kleinstes Gegenbeispiel)
 - Jeder Baum mit mehr als zwei Knoten enthält mindestens zwei Blätter
 - Durch Entfernen eines Blatts in einem Baum mit mehr als zwei Knoten erhält man wieder einen Baum
- Wenn man eine Kante aus einem Baum entfernt, ist der resultierende Graph nicht zusammenhängend.
 - Bäume sind "gerade noch" zusammenhängend.

Graphtraversierung

[Dasgupta, Papadimitriou, & Vazirani, 2006]

- Allgemeiner Traversierungsalgorithmus (Startknoten s)
 - Arr Z={s}
 - ▶ While $\exists u \in Z, v \in V \setminus Z: \{u,v\} \in E$
 - Z=Z∪{v}
 - Endwhile

Tiefensuche

- Exploriere die Nachbarschaft der jüngsten Knoten in Z
 - Implementierung mit Hilfe eines Stapelspeichers (stack): LIFO
 - Push: nicht betrachtete Knoten in der Nachbarschaft des obersten Elements
 - Pop: falls alle Knoten in der Nachbarschaft des obersten Elements bereits betrachtet wurden
 - ▶ Lineare Laufzeit: O(|V|+|E|) bei Verwendung einer Adjazenzliste

Breitensuche

- Exploriere die Nachbarschaft der ältesten Knoten in Z
 - ▶ Implementierung mit Hilfe einer Warteschlange (queue): FIFO
 - Vordringen in Ebenen
 - Die k. Ebene besteht aus allen Knoten, deren kürzester Abstand zu u k beträgt.
 - Spannbaum aus kürzesten Wegen
 - Lineare Laufzeit

Traversierung: Anwendungen

- Finden aller von s erreichbaren Knoten
- Finden aller Zusammenhangskomponenten
 - Knotenbezeichnung (pre,post)
 - pre: push-Zeitpunkt, post: pop-Zeipunkt

- Test auf Kreisfreiheit
 - ▶ G enthält einen Kreis ⇔ Traversierung liefert eine Rückkante

Breitensuche: Anwendungen

- Finden des kürzesten Weges zwischen zwei Knoten
- Test auf Bipartitheit
 - Def.: Ein Graph (V,E) ist bipartit, wenn es zwei disjunkte Mengen V_1 und V_2 gibt, so dass $V=V_1\cup V_2$ und $e\cap V_1\neq\varnothing$ und $e\cap V_2\neq\varnothing$ für alle $e\in E$.
 - ▶ G ist bipartit ⇔ G enthält keinen Kreis ungerader Länge
 - von links nach rechts: indirekter Beweis durch 2-Färbung der Knoten (adjazente Knoten dürfen nicht dieselbe Farbe haben)
 - von rechts nach links: konstruktiv durch 2-Färbung der Knoten mit Hilfe einer Breitensuche

Gerichtete Graphen (I)

- Terminologie
 - ▶ Ein Knoten v heißt Quelle, wenn sein Eingangsgrad indeg(v)=0.
 - ▶ Ein Knoten v heißt Senke, wenn sein Ausgangsgrad outdeg(v)=0.
- Finden des kürzesten Weges zwischen zwei Knoten
 - Breitensuche
- Test auf Kreisfreiheit
 - Breiten- oder Tiefensuche

Gerichtete Graphen (2)

- Topologische Sortierung (Linearisierung)
 - ▶ Def: Eine topologische Sortierung eines gerichteten Graphen G=(V,A) ist eine bijektive Abbildung f:V \rightarrow {I,2,...,|V|}, so dass f(u)<f(v) für alle (u,v)∈A gilt.
 - \blacktriangleright G besitzt eine topologische Sortierung \Leftrightarrow G ist kreisfrei
 - von links nach rechts: indirekter Beweis
 - von rechts nach links: konstruktiv mit Hilfe einer Tiefensuche, topologische Sortierung in umgekehrter post-Reihenfolge
 - Jede Kante im Tiefensuchebaum führt zu einem Knoten mit geringerem post-Index

Gerichtete Graphen (3)

Test auf starken Zusammenhang

- Def.: Den transponierten Graph G^T eines gerichteten Graphen G erhält man durch Transponierung der Adjazenzmatrix.
 - Umkehrung aller Kanten
- Breiten- oder Tiefensuche ausgehend von beliebigem Knoten s in G und G^T
 - G ist stark zusammenhängend ⇔ Beide Traversierungen liefern alle Knoten

• Finden aller starken Zusammenhangskomponenten

- Die starken Zusammenhangskomponenten eines Graphen G bilden einen kreisfreien gerichteten Graphen
- Tiefensuche ausgehend vom Knoten einer Senkenkomponente liefert alle Knoten dieser Komponente
- ▶ Ein solcher Knoten hat maximalen post-Index nach Tiefensuche in G^T
- Algorithmus von Kosaraju (1978)

Algorithmus von Kosaraju

(b)

- ▶ Tiefensuche in G^T einschl. post-Markierung
- ▶ While V≠∅
- Tiefensuche in G
 ausgehend vom Knoten
 mit höchstem post-Index
- Resultierende
 Knotenmenge stellt eine
 Komponente dar und
 kann entfernt werden
- ▶ Endwhile

Zusammenfassung

- Folgende Probleme sind sowohl in ungerichteten als auch in gerichteten Graphen in linearer Zeit lösbar (O(|V|+|E|) bei Verwendung von Adjazenzlisten):
 - Testen auf Kreisfreiheit
 - Testen auf Bipartitheit
 - Finden aller Zusammenhangskomponenten
 - Finden kürzester Wege
 - Finden einer topologischen Sortierung eines gerichteten Graphen
- Erweiterung von Breitensuche für gewichtete Graphen
 - Dijkstras Algorithmus (für positive Kantengewichte)
 - Bellman & Ford Algorithmus