
Algorithmische Graphentheorie: Graphtraversierung

Wege, Pfade und Kreise

• Def.: Ein Weg ist eine Folge von Knoten (v1, v2, ..., vk), so
dass {vi,vi+1}∈E für alle 1≤i<k.
‣ Der Abstand zwischen zwei Knoten ist die Länge des kürzesten Weges

zwischen diesen Knoten.
‣ Ein Weg heißt einfach, wenn {vi,vi+1}≠{vj,vj+1} für alle 1≤i<j<k
‣ Analog für gerichtete Graphen

• Def.: Ein Pfad ist ein Weg (v1, v2, ..., vk), so dass vi≠vj für
alle 1≤i<j≤k.

• Def.: Ein Kreis ist ein einfacher Weg (v1, v2, ..., vk), so dass
vi≠vj für alle 1<i<j<k und v1=vk.

1

Algorithmische Graphentheorie: Graphtraversierung

Zusammenhang

• Def.: Ein ungerichteter Graph ist zusammenhängend,
wenn es für alle u,v∈V einen Pfad von u nach v gibt.

• Def.: Ein gerichteter Graph ist stark zusammenhängend,
wenn es für alle u,v∈V einen Pfad von u nach v und einen
Pfad von v nach u gibt.
‣ Ein gerichteter Graph ist schwach zusammenhängend wenn sein

ungerichteter Graph zusammenhängend ist.

• Die (Zusammenhangs-)Komponenten eines Graphen sind
seine maximalen zusammenhängenden Teilgraphen.

2

Algorithmische Graphentheorie: Graphtraversierung

Bäume

• Def.: Ein Baum ist ein zusammenhängender kreisfreier
Graph.
‣ Ein Knoten eines Baums v heißt Blatt, wenn deg(v)=1.
‣ Ein Wald ist ein Graph, dessen Komponenten Bäume sind.

• Satz: In jedem Baum gilt |E|=|V|-1.
‣ Beweis: Widerspruch (durch Annahme es gäbe ein kleinstes Gegenbeispiel)

- Jeder Baum mit mehr als zwei Knoten enthält mindestens zwei Blätter
- Durch Entfernen eines Blatts in einem Baum mit mehr als zwei Knoten erhält man

wieder einen Baum

• Wenn man eine Kante aus einem Baum entfernt, ist der
resultierende Graph nicht zusammenhängend.
‣ Bäume sind “gerade noch” zusammenhängend.

3

Algorithmische Graphentheorie: Graphtraversierung

Graphtraversierung

• Allgemeiner Traversierungsalgorithmus (Startknoten s)
‣ Z={s}
‣ While ∃u∈Z, v∈V\Z: {u,v}∈E
‣ Z=Z∪{v}

‣ Endwhile

4

Figure 3.2 Exploring a graph is rather like navigating a maze.

A

C

B

F

D

H I J

K

E

G

L

H

G

DA

C

F
K
L

J

I

B

E

Figure 3.3 Finding all nodes reachable from a particular node.
procedure explore(G, v)
Input: G = (V,E) is a graph; v ∈ V
Output: visited(u) is set to true for all nodes u reachable from v

visited(v) = true

previsit(v)
for each edge (v, u) ∈ E:

if not visited(u): explore(u)
postvisit(v)

and whenever you arrive at any junction (vertex) there are a variety of passages (edges) you
can follow. A careless choice of passages might lead you around in circles or might cause you
to overlook some accessible part of the maze. Clearly, you need to record some intermediate
information during exploration.
This classic challenge has amused people for centuries. Everybody knows that all you

need to explore a labyrinth is a ball of string and a piece of chalk. The chalk prevents looping,
by marking the junctions you have already visited. The string always takes you back to the
starting place, enabling you to return to passages that you previously saw but did not yet
investigate.
How can we simulate these two primitives, chalk and string, on a computer? The chalk

marks are easy: for each vertex, maintain a Boolean variable indicating whether it has been
visited already. As for the ball of string, the correct cyberanalog is a stack. After all, the exact
role of the string is to offer two primitive operations—unwind to get to a new junction (the
stack equivalent is to push the new vertex) and rewind to return to the previous junction (pop
the stack).
Instead of explicitly maintaining a stack, we will do so implicitly via recursion (which

is implemented using a stack of activation records). The resulting algorithm is shown in

86

[Dasgupta, Papadimitriou, & Vazirani, 2006]

Algorithmische Graphentheorie: Graphtraversierung

Tiefensuche

• Exploriere die Nachbarschaft der jüngsten Knoten in Z
‣ Implementierung mit Hilfe eines Stapelspeichers (stack): LIFO

- Push: nicht betrachtete Knoten in der Nachbarschaft des obersten Elements
- Pop: falls alle Knoten in der Nachbarschaft des obersten Elements bereits

betrachtet wurden

‣ Lineare Laufzeit: O(|V|+|E|) bei Verwendung einer Adjazenzliste

5

Figure 3.2 Exploring a graph is rather like navigating a maze.

A

C

B

F

D

H I J

K

E

G

L

H

G

DA

C

F
K
L

J

I

B

E

Figure 3.3 Finding all nodes reachable from a particular node.
procedure explore(G, v)
Input: G = (V,E) is a graph; v ∈ V
Output: visited(u) is set to true for all nodes u reachable from v

visited(v) = true

previsit(v)
for each edge (v, u) ∈ E:

if not visited(u): explore(u)
postvisit(v)

and whenever you arrive at any junction (vertex) there are a variety of passages (edges) you
can follow. A careless choice of passages might lead you around in circles or might cause you
to overlook some accessible part of the maze. Clearly, you need to record some intermediate
information during exploration.
This classic challenge has amused people for centuries. Everybody knows that all you

need to explore a labyrinth is a ball of string and a piece of chalk. The chalk prevents looping,
by marking the junctions you have already visited. The string always takes you back to the
starting place, enabling you to return to passages that you previously saw but did not yet
investigate.
How can we simulate these two primitives, chalk and string, on a computer? The chalk

marks are easy: for each vertex, maintain a Boolean variable indicating whether it has been
visited already. As for the ball of string, the correct cyberanalog is a stack. After all, the exact
role of the string is to offer two primitive operations—unwind to get to a new junction (the
stack equivalent is to push the new vertex) and rewind to return to the previous junction (pop
the stack).
Instead of explicitly maintaining a stack, we will do so implicitly via recursion (which

is implemented using a stack of activation records). The resulting algorithm is shown in

86

Figure 3.4 The result of explore(A) on the graph of Figure 3.2.

I

E

J

C

F

B

A

D

G

H

Figure 3.5 Depth-first search.
procedure dfs(G)

for all v ∈ V :
visited(v) = false

for all v ∈ V :
if not visited(v): explore(v)

This loop takes a different amount of time for each vertex, so let’s consider all vertices to-
gether. The total work done in step 1 is then O(|V |). In step 2, over the course of the entire
DFS, each edge {x, y} ∈ E is examined exactly twice, once during explore(x) and once dur-
ing explore(y). The overall time for step 2 is therefore O(|E|) and so the depth-first search
has a running time of O(|V | + |E|), linear in the size of its input. This is as efficient as we
could possibly hope for, since it takes this long even just to read the adjacency list.
Figure 3.6 shows the outcome of depth-first search on a 12-node graph, once again break-

ing ties alphabetically (ignore the pairs of numbers for the time being). The outer loop of DFS
calls explore three times, on A, C, and finally F . As a result, there are three trees, each
rooted at one of these starting points. Together they constitute a forest.

3.2.3 Connectivity in undirected graphs
An undirected graph is connected if there is a path between any pair of vertices. The graph
of Figure 3.6 is not connected because, for instance, there is no path from A to K. However, it
does have three disjoint connected regions, corresponding to the following sets of vertices:

{A,B,E, I, J} {C,D,G,H,K,L} {F}

88

Algorithmische Graphentheorie: Graphtraversierung

Breitensuche

• Exploriere die Nachbarschaft der ältesten Knoten in Z
‣ Implementierung mit Hilfe einer Warteschlange (queue): FIFO
‣ Vordringen in Ebenen

- Die k. Ebene besteht aus allen Knoten, deren kürzester Abstand zu u k beträgt.
- Spannbaum aus kürzesten Wegen

‣ Lineare Laufzeit

6

Chapter 4

Paths in graphs

4.1 Distances
Depth-first search readily identifies all the vertices of a graph that can be reached from a
designated starting point. It also finds explicit paths to these vertices, summarized in its
search tree (Figure 4.1). However, these paths might not be the most economical ones possi-
ble. In the figure, vertex C is reachable from S by traversing just one edge, while the DFS tree
shows a path of length 3. This chapter is about algorithms for finding shortest paths in graphs.

Path lengths allow us to talk quantitatively about the extent to which different vertices of
a graph are separated from each other:

The distance between two nodes is the length of the shortest path between them.

To get a concrete feel for this notion, consider a physical realization of a graph that has a ball
for each vertex and a piece of string for each edge. If you lift the ball for vertex s high enough,
the other balls that get pulled up along with it are precisely the vertices reachable from s.
And to find their distances from s, you need only measure how far below s they hang.
In Figure 4.2 for example, vertex B is at distance 2 from S, and there are two shortest

paths to it. When S is held up, the strings along each of these paths become taut. On the
other hand, edge (D,E) plays no role in any shortest path and therefore remains slack.

Figure 4.1 (a) A simple graph and (b) its depth-first search tree.

(a)

E AS

BD C

(b)
S

A

B

D

E

C

105

Figure 4.4 The result of breadth-first search on the graph of Figure 4.1.

Order Queue contents
of visitation after processing node

[S]
S [A C D E]
A [C D E B]
C [D E B]
D [E B]
E [B]
B []

DA

B

C E

S

right thing. If S is the starting point and the nodes are ordered alphabetically, they get visited
in the sequence shown in Figure 4.4. The breadth-first search tree, on the right, contains the
edges through which each node is initially discovered. Unlike the DFS tree we saw earlier, it
has the property that all its paths from S are the shortest possible. It is therefore a shortest-
path tree.

Correctness and efficiency
We have developed the basic intuition behind breadth-first search. In order to check that
the algorithm works correctly, we need to make sure that it faithfully executes this intuition.
What we expect, precisely, is that

For each d = 0, 1, 2, . . ., there is a moment at which (1) all nodes at distance ≤ d
from s have their distances correctly set; (2) all other nodes have their distances
set to∞; and (3) the queue contains exactly the nodes at distance d.

This has been phrased with an inductive argument in mind. We have already discussed both
the base case and the inductive step. Can you fill in the details?

The overall running time of this algorithm is linear, O(|V | + |E|), for exactly the same
reasons as depth-first search. Each vertex is put on the queue exactly once, when it is first en-
countered, so there are 2 |V | queue operations. The rest of the work is done in the algorithm’s
innermost loop. Over the course of execution, this loop looks at each edge once (in directed
graphs) or twice (in undirected graphs), and therefore takes O(|E|) time.

Now that we have both BFS and DFS before us: how do their exploration styles compare?
Depth-first search makes deep incursions into a graph, retreating only when it runs out of new
nodes to visit. This strategy gives it the wonderful, subtle, and extremely useful properties
we saw in the Chapter 3. But it also means that DFS can end up taking a long and convoluted
route to a vertex that is actually very close by, as in Figure 4.1. Breadth-first search makes
sure to visit vertices in increasing order of their distance from the starting point. This is a
broader, shallower search, rather like the propagation of a wave upon water. And it is achieved
using almost exactly the same code as DFS—but with a queue in place of a stack.

107

Algorithmische Graphentheorie: Graphtraversierung

Traversierung: Anwendungen

• Finden aller von s erreichbaren Knoten

• Finden aller Zusammenhangskomponenten
‣ Knotenbezeichnung (pre,post)

- pre: push-Zeitpunkt, post: pop-Zeipunkt

• Test auf Kreisfreiheit
‣ G enthält einen Kreis ⇔ Traversierung liefert eine Rückkante

7

Figure 3.6 (a) A 12-node graph. (b) DFS search forest.

(a)
A B C D

E F G H

I J K L

(b) A

B E

I

J G

K

FC

D

H

L

1,10

2,3

4,9

5,8

6,7

11,22 23,24

12,21

13,20

14,17

15,16

18,19

These regions are called connected components: each of them is a subgraph that is internally
connected but has no edges to the remaining vertices. When explore is started at a particular
vertex, it identifies precisely the connected component containing that vertex. And each time
the DFS outer loop calls explore, a new connected component is picked out.
Thus depth-first search is trivially adapted to check if a graph is connected and, more

generally, to assign each node v an integer ccnum[v] identifying the connected component to
which it belongs. All it takes is

procedure previsit(v)
ccnum[v] = cc

where cc needs to be initialized to zero and to be incremented each time the DFS procedure
calls explore.

3.2.4 Previsit and postvisit orderings
We have seen how depth-first search—a few unassuming lines of code—is able to uncover the
connectivity structure of an undirected graph in just linear time. But it is far more versatile
than this. In order to stretch it further, we will collect a little more information during the ex-
ploration process: for each node, we will note down the times of two important events, the mo-
ment of first discovery (corresponding to previsit) and that of final departure (postvisit).
Figure 3.6 shows these numbers for our earlier example, in which there are 24 events. The
fifth event is the discovery of I. The 21st event consists of leaving D behind for good.
One way to generate arrays pre and postwith these numbers is to define a simple counter

clock, initially set to 1, which gets updated as follows.

procedure previsit(v)
pre[v] = clock

clock = clock + 1

89

Algorithmische Graphentheorie: Graphtraversierung

Breitensuche: Anwendungen

• Finden des kürzesten Weges zwischen zwei Knoten

• Test auf Bipartitheit
‣ Def.: Ein Graph (V,E) ist bipartit, wenn es zwei disjunkte Mengen V1 und

V2 gibt, so dass V=V1∪V2 und e∩V1≠∅ und e∩V2≠∅ für alle e∈E.

‣ G ist bipartit ⇔ G enthält keinen Kreis ungerader Länge

- von links nach rechts: indirekter Beweis durch 2-Färbung der Knoten (adjazente
Knoten dürfen nicht dieselbe Farbe haben)

- von rechts nach links: konstruktiv durch 2-Färbung der Knoten mit Hilfe einer
Breitensuche

8

Algorithmische Graphentheorie: Graphtraversierung

Gerichtete Graphen (1)
• Terminologie
‣ Ein Knoten v heißt Quelle, wenn sein Eingangsgrad indeg(v)=0.
‣ Ein Knoten v heißt Senke, wenn sein Ausgangsgrad outdeg(v)=0.

• Finden des kürzesten Weges zwischen zwei Knoten
‣ Breitensuche

• Test auf Kreisfreiheit
‣ Breiten- oder Tiefensuche

9

Figure 3.7 DFS on a directed graph.

AB C

F DE

G H

A

H

B C

E D

F

G

12,15

13,14

1,16

2,11

4,7

5,6

8,9

3,10

procedure postvisit(v)
post[v] = clock

clock = clock + 1

These timings will soon take on larger significance. Meanwhile, you might have noticed from
Figure 3.4 that:

Property For any nodes u and v, the two intervals [pre(u),post(u)] and [pre(v),post(v)] are
either disjoint or one is contained within the other.

Why? Because [pre(u),post(u)] is essentially the time during which vertex u was on the
stack. The last-in, first-out behavior of a stack explains the rest.

3.3 Depth-first search in directed graphs
3.3.1 Types of edges
Our depth-first search algorithm can be run verbatim on directed graphs, taking care to tra-
verse edges only in their prescribed directions. Figure 3.7 shows an example and the search
tree that results when vertices are considered in lexicographic order.
In further analyzing the directed case, it helps to have terminology for important relation-

ships between nodes of a tree. A is the root of the search tree; everything else is its descendant.
Similarly, E has descendants F , G, andH, and conversely, is an ancestor of these three nodes.
The family analogy is carried further: C is the parent of D, which is its child.
For undirected graphs we distinguished between tree edges and nontree edges. In the

directed case, there is a slightly more elaborate taxonomy:

90

Algorithmische Graphentheorie: Graphtraversierung

Gerichtete Graphen (2)

• Topologische Sortierung (Linearisierung)
‣ Def: Eine topologische Sortierung eines gerichteten Graphen G=(V,A)

ist eine bijektive Abbildung f:V→{1,2,...,|V|}, so dass f(u)<f(v) für alle
(u,v)∈A gilt.

‣ G besitzt eine topologische Sortierung ⇔ G ist kreisfrei

- von links nach rechts: indirekter Beweis
- von rechts nach links: konstruktiv mit Hilfe einer Tiefensuche, topologische

Sortierung in umgekehrter post-Reihenfolge
- Jede Kante im Tiefensuchebaum führt zu einem Knoten mit geringerem post-Index

10

Figure 3.8 A directed acyclic graph with one source, two sinks, and four possible lineariza-
tions.

A

B

C

D

E

F

Property A directed graph has a cycle if and only if its depth-first search reveals a back
edge.
Proof. One direction is quite easy: if (u, v) is a back edge, then there is a cycle consisting of
this edge together with the path from v to u in the search tree.
Conversely, if the graph has a cycle v0 → v1 → · · · → vk → v0, look at the first node on this

cycle to be discovered (the node with the lowest pre number). Suppose it is vi. All the other
vj on the cycle are reachable from it and will therefore be its descendants in the search tree.
In particular, the edge vi−1 → vi (or vk → v0 if i = 0) leads from a node to its ancestor and is
thus by definition a back edge.
Directed acyclic graphs, or dags for short, come up all the time. They are good for modeling

relations like causalities, hierarchies, and temporal dependencies. For example, suppose that
you need to perform many tasks, but some of them cannot begin until certain others are
completed (you have to wake up before you can get out of bed; you have to be out of bed, but
not yet dressed, to take a shower; and so on). The question then is, what is a valid order in
which to perform the tasks?
Such constraints are conveniently represented by a directed graph in which each task is

a node, and there is an edge from u to v if u is a precondition for v. In other words, before
performing a task, all the tasks pointing to it must be completed. If this graph has a cycle,
there is no hope: no ordering can possibly work. If on the other hand the graph is a dag,
we would like if possible to linearize (or topologically sort) it, to order the vertices one after
the other in such a way that each edge goes from an earlier vertex to a later vertex, so that
all precedence constraints are satisfied. In Figure 3.8, for instance, one valid ordering is
B,A,D,C,E,F . (Can you spot the other three?)
What types of dags can be linearized? Simple: All of them. And once again depth-first

search tells us exactly how to do it: simply perform tasks in decreasing order of their post
numbers. After all, the only edges (u, v) in a graph for which post(u) <post(v) are back
edges (recall the table of edge types on page 91)—and we have seen that a dag cannot have
back edges. Therefore:
Property In a dag, every edge leads to a vertex with a lower post number.
This gives us a linear-time algorithm for ordering the nodes of a dag. And, together with

our earlier observations, it tells us that three rather different-sounding properties—acyclicity,
linearizability, and the absence of back edges during a depth-first search—are in fact one and

92

Algorithmische Graphentheorie: Graphtraversierung

Gerichtete Graphen (3)
• Test auf starken Zusammenhang
‣ Def.: Den transponierten Graph GT eines gerichteten Graphen G

erhält man durch Transponierung der Adjazenzmatrix.
- Umkehrung aller Kanten

‣ Breiten- oder Tiefensuche ausgehend von beliebigem Knoten s in G
und GT

- G ist stark zusammenhängend ⇔ Beide Traversierungen liefern alle Knoten

• Finden aller starken Zusammenhangskomponenten
‣ Die starken Zusammenhangskomponenten eines Graphen G bilden

einen kreisfreien gerichteten Graphen
‣ Tiefensuche ausgehend vom Knoten einer Senkenkomponente liefert

alle Knoten dieser Komponente
‣ Ein solcher Knoten hat maximalen post-Index nach Tiefensuche in GT

‣ Algorithmus von Kosaraju (1978)

11

Algorithmische Graphentheorie: Graphtraversierung

Algorithmus von Kosaraju

12

Figure 3.9 (a) A directed graph and its strongly connected components. (b) The meta-graph.

(a)
A

D E

C

F

B

HG

K

L

JI

(b)

A B,E C,F

D J,K,L
G,H,I

3.4.2 An efficient algorithm
The decomposition of a directed graph into its strongly connected components is very infor-
mative and useful. It turns out, fortunately, that it can be found in linear time by making
further use of depth-first search. The algorithm is based on some properties we have already
seen but which we will now pinpoint more closely.

Property 1 If the explore subroutine is started at node u, then it will terminate precisely
when all nodes reachable from u have been visited.

Therefore, if we call explore on a node that lies somewhere in a sink strongly connected
component (a strongly connected component that is a sink in the meta-graph), then we will
retrieve exactly that component. Figure 3.9 has two sink strongly connected components.
Starting explore at node K, for instance, will completely traverse the larger of them and
then stop.
This suggests a way of finding one strongly connected component, but still leaves open two

major problems: (A) how do we find a node that we know for sure lies in a sink strongly con-
nected component and (B) how do we continue once this first component has been discovered?
Let’s start with problem (A). There is not an easy, direct way to pick out a node that is

guaranteed to lie in a sink strongly connected component. But there is a way to get a node in
a source strongly connected component.

Property 2 The node that receives the highest post number in a depth-first search must lie
in a source strongly connected component.
This follows from the following more general property.

Property 3 If C and C ′ are strongly connected components, and there is an edge from a node

94

Figure 3.10 The reverse of the graph from Figure 3.9.

A

D E

C

F

B

HG

K

L

JI

A B,E C,F

D J,K,L
G,H,I

in C to a node in C ′, then the highest post number in C is bigger than the highest post
number in C ′.

Proof. In proving Property 3, there are two cases to consider. If the depth-first search visits
component C before component C ′, then clearly all of C and C ′ will be traversed before the
procedure gets stuck (see Property 1). Therefore the first node visited in C will have a higher
post number than any node of C ′. On the other hand, if C ′ gets visited first, then the depth-
first search will get stuck after seeing all of C ′ but before seeing any of C, in which case the
property follows immediately.
Property 3 can be restated as saying that the strongly connected components can be lin-

earized by arranging them in decreasing order of their highest post numbers. This is a gen-
eralization of our earlier algorithm for linearizing dags; in a dag, each node is a singleton
strongly connected component.
Property 2 helps us find a node in the source strongly connected component of G. How-

ever, what we need is a node in the sink component. Our means seem to be the opposite of
our needs! But consider the reverse graph GR, the same as G but with all edges reversed
(Figure 3.10). GR has exactly the same strongly connected components as G (why?). So, if we
do a depth-first search of GR, the node with the highest post number will come from a source
strongly connected component in GR, which is to say a sink strongly connected component in
G. We have solved problem (A)!
Onward to problem (B). How do we continue after the first sink component is identified?

The solution is also provided by Property 3. Once we have found the first strongly connected
component and deleted it from the graph, the node with the highest post number among
those remaining will belong to a sink strongly connected component of whatever remains of
G. Therefore we can keep using the post numbering from our initial depth-first search on GR

95

‣ Tiefensuche in GT einschl.
post-Markierung
‣While V≠∅
‣ Tiefensuche in G

ausgehend vom Knoten
mit höchstem post-Index

‣ Resultierende
Knotenmenge stellt eine
Komponente dar und
kann entfernt werden

‣ Endwhile

Algorithmische Graphentheorie: Graphtraversierung

Zusammenfassung

• Folgende Probleme sind sowohl in ungerichteten als auch
in gerichteten Graphen in linearer Zeit lösbar
(O(|V|+|E|) bei Verwendung von Adjazenzlisten):
‣ Testen auf Kreisfreiheit
‣ Testen auf Bipartitheit
‣ Finden aller Zusammenhangskomponenten
‣ Finden kürzester Wege
‣ Finden einer topologischen Sortierung eines gerichteten Graphen

• Erweiterung von Breitensuche für gewichtete Graphen
‣ Dijkstras Algorithmus (für positive Kantengewichte)
‣ Bellman & Ford Algorithmus

13

